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A novel numerical method for simulations of isothermal, compressible two-phase flows of one fluid com-
ponent near the critical point is presented on the basis of a diffuse-interface model and a Van der Waals
equation of state. Because of the non-convexity of the latter, the nature of the set of governing equations
is mixed hyperbolic–elliptic. This prevents the application of standard numerical methods for compress-
ible flow. Moreover, the Korteweg capillary stress tensor, characteristic for the diffuse-interface approach,
introduces third-order spatial derivatives of mass density in the Navier–Stokes equation, resulting in a
dispersive behavior of the solution. Our computational method relies on a transformation of the con-
served variables, which controls dispersion, stabilizes the numerical simulation and enables the use of
coarser grids. A one-dimensional simulation shows that this method provides better stability and accu-
racy than without transformation of variables. Two- and three-dimensional simulations for isothermal
liquid–vapor flows, in particular the retraction of a liquid non-spherical drop in vapor and the binary
droplet collision in vapor, show the applicability of the method. The surface tension calculated from
the numerical results is in good agreement with its theoretical value if the computational grid is suffi-
ciently fine.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past decades, a great deal of effort has been addressed
towards mathematically consistent descriptions of flows in the
presence of interfaces, that is surfaces of separation between
different thermodynamic phases of a single compound or between
different fluids. Such multiphase/multifluid flows occur in numer-
ous industrial applications and geophysical phenomena. From a
physical point of view, interfaces are never sharp, but they can
be regarded as thin layers of fluid where properties such as mass
density, pressure and viscosity change continuously between the
values of the bulk fluid regions. Methods that treat the interfaces
as finite portions of the fluid domain are called diffuse-interface
methods.

Although a diffuse-interface method seems the most natural ap-
proach, computational methods that make use of the assumption
of zero interface thickness are at present more popular in the liter-
ature. They are called sharp-interface methods. The main reason for
their widespread use is probably the small numerical grid spacing
required for the resolution of the interface in a diffuse-interface
method. In the case of one-component multiphase systems, the
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interface thickness depends solely on temperature and becomes
infinite at the critical point where only the gaseous phase of a sub-
stance exists. At temperatures that are not in the vicinity of the
critical value, the thickness of a liquid–vapor interface typically at-
tains the order of a few molecule diameters. Consequently, a direct
numerical simulation aiming to capture both the scales of the size
of the interface thickness and those of the order of a typical drop or
bubble diameter is unfeasible.

In a diffuse-interface method a unique set of governing equa-
tions describes the complete two-phase domain and no interface
tracking or reconstruction, necessary in sharp-interface methods,
is required. From this point of view, diffuse-interface methods
present the same advantages over the tracking methods as the Le-
vel-Set method does. In the latter, however, determining the actual
position of the interface requires the solution of an additional evo-
lution equation for a level function. Moreover, the explicit form of
such equation depends on the particular problem considered (see
for example Mulder et al., 1992).

Here, an extra contribution to the stress tensor, which accounts
for the capillary stresses at the interface, is added to the momen-
tum conservation equation, instead. The usual choice for this ten-
sor is the second-order frame-invariant Korteweg tensor, which
depends on the mass density and its spatial derivatives (Korteweg,
1901), and represents long-ranged molecular interactions (Bongi-
orno et al., 1976). Continuum-type formulations of flows with fluid
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surfaces of separation that adopt Korteweg’s stress tensor have
also been used for multifluid problems, such as displacements of
a fluid into another miscible and more viscous fluid in porous envi-
ronment (Chen et al., 2001) or in capillary tubes (Chen and Mei-
burg, 2002). In such cases, Korteweg stresses originate from
concentration gradients.

For a multiphase flow of the same fluid component, including
Korteweg’s tensor in the momentum equation makes the mass
density continuous everywhere in the domain. Moreover, there is
no need to introduce singularities in order to include surface ten-
sion in the equations. This is an advantage over other one-fluid for-
mulations since topological changes of the interface in dynamical
conditions, as well as integral properties such as surface tension,
are accounted for in the solution. Hence, no special treatment for
complex, time-dependent interface topologies is required.

Another advantage of the diffuse-interface method with Kor-
teweg’s stress tensor is that the thickness of an interface is not arti-
ficially increased, as in some sharp-interface methods like the
Volume-of-Fluid method. Moreover, phase transitions are ac-
counted for in the governing equations in a physical way.

Recently, it has been shown (Lamorgese and Mauri, 2009) that it
is possible to apply the diffuse-interface approach to two-phase
flows and capture the finite interfacial zones with sufficient accu-
racy on uniform grids that do not require an excessively large num-
ber of nodes. For this application to be successful two conditions
have to be met. First, the two-phase system should be close to
the critical temperature and second, the characteristic length of
the computational domain should be sufficiently small so that only
a few drops and/or bubbles can be present. In some applications of
the diffuse-interface method with Korteweg’s formulation of the
capillary tensor (Jamet et al., 2001) these conditions are relaxed
by artificially increasing the interface thickness. Although the use
of an artificial thickness enables larger computational domains
and wider ranges of temperature, the thermodynamic behavior
of the fluid has to be modified, which leads to modifications in
macroscopic properties as well (Jamet et al., 2001; Verschueren
et al., 2001).

Numerical solution methods for the governing equations of the
diffuse-interface method with Korteweg’s stress tensor for a
liquid–vapor flow have to cope with two additional problems,
compared to single-phase flow. First, the Korteweg tensor leads
to dispersive behavior of the solution, since it contains a second-
order spatial derivative of the mass density. Second, an equation
of state, which captures the behavior of both liquid and vapor
phases, such as the Van der Waals equation, always has a non-con-
vex part. This leads to mixed hyperbolic–elliptic nature of the set of
governing equations, instead of the purely hyperbolic nature for an
ideal gas, and prevents the application of standard numerical
methods for compressible flow simulation.

In this paper we will develop a numerical method suitable to
cope with these two problems and apply it to several standard
cases for two-phase flow in two and three spatial dimensions.
The advantage of the present method over other methods used in
the literature is that it is applied after a transformation of the
dependent variables, which removes the major terms responsible
for the dispersive nature of the set of equations. The transforma-
tion of variables is based on the work developed in Cockburn and
Gau (1996) for one-dimensional, inviscid phase transitions in sol-
ids. The transformation is possible if the Reynolds number based
on the interface thickness is not too large. We will show that the
transformation stabilizes the numerical method significantly and
hence allows the use of coarser grids.

We focus on isothermal liquid–vapor flows near the critical
temperature, for which the choice of the Van der Waals equation
of state is the most natural. In a diffuse-interface method, viscosity
and capillarity coefficient should be continuous functions of mass
density. The numerical results will be validated by comparing the
surface tension found from the radius of a liquid drop in steady
state and the pressure drop over the interface with its theoretical
value at thermodynamic equilibrium (Cahn and Hilliard, 1958;
Cahn, 1959).

The paper is structured as follows. In Section 2 we briefly recall
the derivation of the Korteweg tensor when the capillarity coeffi-
cient is a general function of mass density, and we describe the
set of governing equations for an isothermal two-phase flow of a
pure substance. Also, the consequences of a non-monotonic equa-
tion of state are briefly discussed and an energy equation is de-
rived. In Section 3 the transformation of variables is introduced.
Section 4 presents the numerical method and a one-dimensional
simulation that demonstrates the stability of the method. In Sec-
tion 5 we discuss the results of a two- and three-dimensional sim-
ulation of the retraction of a liquid drop in vapor to its equilibrium
shape. For this problem the value of the surface tension in steady
state is compared with its theoretical value, a grid refinement
study is performed and the advantage of the transformation of
variables is demonstrated by a comparison of results with and
without transformation. Section 6 shows the results of two simula-
tions of the two-dimensional binary droplet collision with subse-
quent coalescence, at different Weber number. Finally, in Section
7 some conclusions are drawn.
2. Governing equations

In this section, we outline the derivation of the Korteweg tensor
that we adopt and we present the system of governing equations. A
suitable approach for the derivation of the Korteweg tensor for
two-phase flow of a pure substance, in which the mass density
exhibits large variations in space, is calculus of variations. The basis
of the theory is the second law of thermodynamics, which states
that the extrema of the free energy correspond to equilibrium.
We consider a closed volume of fluid V with total mass M. Thus,
the equilibrium condition of a single-component two-phase fluid
can be found by minimizing the total Helmholtz free energy of
the system

Ftot ¼Fb þFs; ð1Þ

where Fb refers to the two bulk phases, while the term Fs accounts
for the interfacial contribution. In Cahn and Hilliard (1958) it is
shown that the free energy density of an isotropic medium can be
expanded as a Taylor series of even powers of the mass density gra-
dient norm. By neglecting higher order terms and integrating over a
given volume V of fluid, (1) can be written in the so-called Landau–
Ginzburg form

Ftot ¼
Z

V
qf ðqÞdV ð2Þ

¼
Z

V
qf 0ðqÞ þ 1

2
KðqÞjrqj2

� �
dV ; ð3Þ

where qf ðqÞ is the total free energy density, qf 0ðqÞ represents the
free energy density of the bulk phases and 1

2 KðqÞjrqj2 is the lowest
non-zero term in the expansion, which is due to the presence of
interfaces. Here, we follow Cahn (1959) in making the assumption
that the coefficient K, also called gradient energy coefficient, is inde-
pendent of the mass density gradient. However, we assume that K is
a function of mass density, which is the most general assumption in
the isothermal case we consider. For the case of constant K, a deri-
vation of (3) can be found in Van der Waals (1894).

The thermodynamic equilibrium of a fixed volume of liquid and
vapor of a single substance corresponds to a minimum of Ftot . An
Euler–Lagrange equation can be derived for the functional
L ¼ I � kq, where I is the integrand in (3), and k, the Lagrangian
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Fig. 1. A Van der Waals isotherm below the critical point in the ðp;qÞ plane. The
horizontal solid line represents the saturation pressure psat at the assigned
temperature. The vertical lines mark the different regions of the solution domain
according to the equation of state. VS = vapor stable, VM = vapor metastable,
PM = phase mixture, LM = liquid metastable, LS = liquid stable. The unstable region
of phase separation corresponds to the phase mixture (PM).
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multiplier needed to conserve mass M, can be identified with the
chemical potential (Cahn, 1959; Pismen, 2001).

In Anderson et al. (1998), the variational procedure is eluci-
dated for the case of constant K, which leads to a special form of
the more general capillary stress tensor T. If a gradient energy coef-
ficient depending on mass density KðqÞ is chosen, the minimiza-
tion of Ftot with the mass conservation constraint leads to the
following expression for the Korteweg tensor (Papatzacos, 2000)

T ¼ �q2f 0
q þ qKðqÞMqþ 1

2
ðqKðqÞÞqjrqj2

� �
I� KðqÞrq

�rq; ð4Þ

where q2f 0
q can be identified with the thermodynamic pressure

p;Mq is the Laplacian of q and I the identity tensor. The subscript
q denotes derivative with respect to mass density. In this paper,
we will use (4) as capillary stress tensor. This form of the Korteweg
tensor is a special case of the one obtained in Korteweg (1901) from
purely mechanical considerations, which reads in its original for-
mulation (Aifantis and Serrin, 1983b)

T ¼ f�pþ aMqþ bjrqj2gIþ drq�rqþ cðr �rÞq;
where a; b; c and d are functions of temperature and mass density
that depend on the substance.

Typically, in the literature on two-phase flows of a pure sub-
stance, the assumption c ¼ 0 is made and the Korteweg tensor
can be simplified to (Dunn and Serrin, 1985)

T ¼ �pþ qcMqþ 1
2
ðqcÞqjrqj2

� �
I� crq�rq; ð5Þ

where c plays the role of a macroscopic capillarity coefficient,
directly related to the surface tension, and is a function of temper-
ature and mass density but not of the mass density gradient. By
identifying the capillarity coefficient c with the gradient energy
coefficient KðqÞ in (3), the equivalence of (4) and (5) can be seen.

The governing equations of two-phase flow in non-equilibrium
conditions are now obtained by addition of the divergence of the
capillary stress tensor to the right-hand side of the Navier–Stokes
equation of momentum conservation, which then reads in conser-
vative form

ðquÞt þr � ðquuÞ ¼ r � ðdþ TÞ; ð6Þ

where the subscript t denotes time derivative, u is the velocity vec-
tor, and d denotes the viscous stress tensor with the Newtonian lin-
ear stress–strain relation

dij ¼ lðqÞ @ui

@xj
þ @uj

@xi

� �
þ gðqÞðr � uÞdij;

where dij is the Kronecker tensor and g is the second viscosity coef-
ficient. In the isothermal case, where the thermodynamic pressure p
is a known function of mass density, a closed system of governing
equations appears if the Navier–Stokes equation is supplemented
with the continuity equation for the liquid–vapor system

qt þr � ðquÞ ¼ 0: ð7Þ

As remarked in the introduction, the Van der Waals equation of
state is an appropriate choice for liquid–vapor flows near the criti-
cal temperature. Hence, at a given temperature we will use as equa-
tion of state

pðq; TÞ ¼ RT
M � bq

q� a

M2 q2; ð8Þ

where R is the universal gas constant, T the prescribed absolute
temperature, M the molar mass, and a and b are two constant coef-
ficients empirically determined for the particular substance.
Although this equation represents the isothermal behavior of a fluid
below the condensation point and above the saturation point, each
isotherm contains an unphysical region of negative compressibility
dp=dq < 0. This region is highly sensitive to small perturbations,
since for any value of density between the two points of infinite
compressibility dp=dq ¼ 0 the system evolves towards phase segre-
gation (Fig. 1).

Van der Waals (1894) developed a mean-field theory of capillar-
ity where a constant value for the gradient-energy coefficient K is
assumed. Nevertheless, he recognized the possibility that K de-
pends on the local thermodynamic state ðq; TÞ. In more recent
works, like Bongiorno et al. (1976), this issue has been investigated
in the context of a molecular theory of the interface. Here we will
make a particular choice for the functional dependence of K on q,
as shown in Section 3.

2.1. Energy equation

Dunn and Serrin (1985) describe the incompatibility of Kor-
teweg’s original formulation of the tensor T with the entropy con-
dition in the classical form of the Clausius–Duhem inequality,
unless the total energy balance equation is modified by postulating
the existence of an unconventional, additional rate of supply of
mechanical energy, which the authors call ‘‘interstitial working”.
When T has the formulation as in (4), the related extra rate of
working reads KðqÞ Dq

Dt rq.
The purpose of this section is to derive an equation for the evo-

lution of the total energy for the case of a compressible two-phase
flow that is assumed to be isothermal. Through this derivation we
will show that the rate of working KðqÞ Dq

Dt rq allows to extend the
isothermal approximation for compressible flow to the two-phase
case. It is useful to recall that a compressible, viscous, single-phase
flow in a fixed volume can only be approximately isothermal.
Unlike the incompressible case, where kinetic energy strictly
decreases in time provided that its flux through the domain bound-
aries is equal to zero, compressible flow is affected by the revers-
ible conversion of kinetic into internal energy.

Compared to single-phase isothermal flow, the two-phase situ-
ation also involves another form of energy besides the kinetic en-
ergy, which is due to the presence of interfaces. The total energy
density of the system therefore reads

qe ¼ 1
2
qjuj2 þ 1

2
KðqÞjrqj2; ð9Þ

where the last term on the right-hand side is the interfacial energy
density. This is the expression of total energy density for which
we intend to derive an evolution equation.



A. Pecenko et al. / International Journal of Multiphase Flow 36 (2010) 558–569 561
Differentiation of both sides of (9) with respect to time and sub-
stitution of the continuity and momentum equations yields after
some calculus:

@ðqeÞ
@t
þr � ðqeuÞ ¼ r � ððdþ TÞ � uÞ � r � KðqÞDq

Dt
rq

� �
�Uþ pr � u: ð10Þ

The second term on the left-hand side is the convective transport.
The first term on the right-hand side describes the transport of total
energy by viscous and interfacial forces and pressure. The second
term on the right-hand side is, as anticipated, the interstitial work-
ing and is also present if the assumption of isothermal flow is not
made.

In contrast with these three terms, the last two terms on the
right-hand side convert energy. The third term on the right-hand
side, U, is the energy dissipation caused by viscosity, and is given
by

U ¼ 2lðqÞ½u2
x þ v2

y þw2
z � þ gðqÞðr � uÞ2 þ lðqÞ½ðuy þ vxÞ2

þ ðuz þwxÞ2 þ ðvz þwyÞ2�;

where u;v and w are the Cartesian components of velocity and x, y
and z are the Cartesian coordinates. The energy dissipation is
strictly positive if

lðqÞ > 0; ð11Þ

gðqÞP �2
3
lðqÞ: ð12Þ

When these conditions are satisfied, the total energy of the isother-
mal two-phase system strictly decreases by viscosity and is con-
served by the capillary forces. The last term on the right-hand
side of (10), also present if the flow is single-phase, is the reversible
part of the energy conversion, identically zero only if the flow is ex-
actly incompressible. However, in regions where the mass density
does not vary much, i.e. far from interfaces, the two-phase flow will
in good approximation be incompressible and this term will be
small.

The isothermal approximation (10) for a two-phase (liquid and
vapor) compressible flow of one component is reasonable if the
thermodynamic state is little below the critical point of the sub-
stance, since latent heat DhðTÞ due to phase change tends to zero
as the critical condition is approached. Therefore, for liquid–vapor
systems close to the critical temperature, phase transitions lead to
only small temperature changes. For this reason, although the iso-
thermal assumption is only a first step in the development of a dif-
fuse-interface method for the general non-isothermal case, it is
not, however, without physical significance.

3. Transformation of variables

As already noted in the introduction, a numerical solution
method for the governing equations of the diffuse-interface ap-
proach has to be able to cope with two additional problems com-
pared to a numerical method for compressible single-phase flow.
First, the non-monotonic Van der Waals equation of state leads
to a mixed hyperbolic–elliptic system of equations in the inviscid
case. Second, the highest-order spatial derivatives of mass density
in the Korteweg tensor lead to dispersive behavior of the solution.

In Cockburn and Gau (1996) a study on the computation of the
approximate solutions of the shock tube-like problem of one-
dimensional phase-transition propagation in solids is presented.
Similar as the diffuse-interface model with a Van der Waals equa-
tion of state, this problem is characterized by a non-monotonic
constitutive law. Hence, in the inviscid case, the nature of the sys-
tem of equations is mixed hyperbolic–elliptic. Cockburn and Gau
(1996) extend the classical concept of weak solutions for purely
hyperbolic systems by adding a viscous and a capillary term to
the momentum equation, and by studying the limiting solutions
of the new set of equations when the viscosity and the capillarity
coefficient vanish while a dimensionless parameter that depends
on the ratio of these two coefficients is kept constant. Stable and
accurate solutions, also for nonzero values of the capillarity coeffi-
cient, have been obtained after application of a transformation of
variables to the governing equations, which removes the dispersive
term, caused by capillarity.

The model we present here differs in two respects from the one
studied in Cockburn and Gau (1996). First, we deal with a real sub-
stance with finite macroscopic properties like viscosity and surface
tension. Hence, the viscosities l and g and the capillarity coeffi-
cient K are given non-zero functions of mass density. Second, we
use an Eulerian frame of reference. We will illustrate, however,
that it is still possible to apply a transformation of variables that
removes the major dispersive terms from the momentum
equation.

In the transformation we apply, mass density remains un-
changed, whereas the new velocity vector bu is given by

qu ¼ qbu � m0ðqÞrq; ð13Þ

where m0ðqÞ is an arbitrary function of mass density having the
dimension of kinematic viscosity. The transformed governing equa-
tions read

qt þr � ðqbuÞ ¼ r � ðm0rqÞ ð14Þ

for mass conservation, and

ðqbuÞt þr � qbu � bu� 	
þrp ¼ r � l rbu þ ðrbuÞT
 �
 �

þrððg� m0qÞr � buÞ þ r qK � m0

q
ðg� m0qÞ

� �
r2q

� �
�r � K þ m2

0

q
þ 2lm00

q
� 2lm0

q2

� �
rq�rq

� �
þr � m0ðrqÞ � bu� 	

þr � m0bu �rq
� 	

�rðm0bu � rqÞ � 2r � lm0

q
rrq

� �
þr ð�gþ m0qÞ

m00
q
þ gm0

q2 þ
1
2
ðK þ qK 0Þ

� �
jrqj2

� �
; ð15Þ

for momentum conservation. Note that the two governing equa-
tions are still in conservative form. Moreover, since the physical
quantities l;g and K are functions of mass density only, and mass
density is unchanged by the transformation, these quantities still
satisfy the same functional dependence.

3.1. The choice of KðqÞ

As in Cockburn and Gau (1996) it is possible to choose the vis-
cosity coefficient m0ðqÞ in such a way that the amount of dispersion
in the transformed set of equations is kept limited. In particular,
the terms in (15) with third-order derivative to the same spatial
coordinate vanish if

m2
0 �

2lþ g
q

� �
m0 þ qK ¼ 0: ð16Þ

The relevant solution of this equation is

m0 ¼
2lþ g

2q
þ 1

2
2lþ g

q

� �2

� 4qK

" #1
2

ð17Þ

provided that

K 6
1

4q
2lþ g

q

� �2

: ð18Þ
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In the following we will assume a specific functional dependence of
KðqÞ and lðqÞ, which gives rise to a particularly attractive set of
transformed equations. First of all, we will follow the usual Stokes
hypothesis for the second viscosity coefficient g ¼ � 2

3 l. If we fur-
ther assume that

lðqÞ ¼ c1q; ð19Þ

and

KðqÞ ¼ c2=q; ð20Þ

with c1 and c2 constants, the viscosity coefficient m0 given by (17)
becomes independent of mass density:

m0 ¼
2
3

c1 þ
4
9

c2
1 � c2

� �1
2

; ð21Þ

which is strictly positive, provided that c2 6 ð4=9Þc2
1.

The possible values of the macroscopic quantity related to cap-
illarity, namely the surface tension, are not restricted by the choice
made for the coefficient K, as will be shown in Section 5. Moreover,
apart from the advantage of the possibility of a transformation
which removes the major dispersive term in the governing equa-
tions, this form for KðqÞ has two further advantages. First, the
resulting expression for the Korteweg tensor obtains its most sim-
ple form, since substitution of (20) in (4) cancels the term with
jrqj2 and yields

T ¼ f�pþ c2MqgI�
c2

q
rq�rq: ð22Þ

Second, the term with the highest order spatial derivative in the
stress tensor becomes linear in q. This will simplify modeling of
the equation in case large-eddy simulation will be adopted as a
solution method, as is envisaged for future work.

Since (16) and (20) yield

K þ m2
0

q
� 2lm0

q2 ¼
gm0

q2 ;

and

K þ qKq ¼ 0;

respectively, more terms in the transformed momentum Eq. (15)
vanish: the diagonal terms in the divergence of the tensorial prod-
uct ðrq�rqÞ cancel some of the terms in the gradient of jrqj2.

In one dimension, the transformed momentum equation ob-
tains a particularly simple form:

ðqbuÞt þ ðqbu2Þx þ ½pðqÞ�x ¼
4
3

c1 � m0

� �
q bux
� 	

x þ m0buqx

� 	
x; ð23Þ

with m0 given by (21). Note that the factor 4
3 c1 � m0
� 	

in the dissipa-
tion term is always positive due to (21).

However, the range of applicability of the transformation of
variables is not limited to the case of l and K given by (19) and
(20) respectively. If other expressions are taken for l or K, the coef-
ficient m0 will be a function of q. This will lead to additional terms
in the set of transformed equations.

Once the parameter m0 has been chosen with the aid of (19) and
(20), the transformed conservation Eqs. (14) and (15) with the un-
changed equation of state (8) are ready to be discretized and inte-
grated. The numerical scheme that has been used to this purpose is
described in the next section.

4. The numerical method

The differential Eqs. (14) and (15) and the equation of state (8)
are discretized on a Cartesian uniform grid. The spatial discretiza-
tion and the time integration methods are extensions to two and
three dimensions of the method by Cockburn and Gau (1996). As
a first step a finite-volume method is applied for the spatial dis-
cretization. This leads to a system of ordinary differential equa-
tions, one for each variable in each grid point.

Hence, the semi-discrete scheme reads in three dimensions:

d
dt

Ui;j;k ¼
1
Dx

FðUÞiþ1
2;j;k
� FðUÞi�1

2;j;k


 �
þ 1

Dy
GðUÞi;jþ1

2;k
� GðUÞi;j�1

2;k


 �
þ 1

Dz
HðUÞi;j;kþ1

2
�HðUÞi;j;k�1

2


 �
; ð24Þ

where Ui;j;k denotes the vector of the conserved variables q and qbu
in grid point ði; j; kÞ and FðUÞ; GðUÞ and HðUÞ denote the vectors of
the fluxes in the x, y and z directions respectively. The spatial dis-
cretization method is second-order accurate and is based on central
differencing: in the grid point ðiþ 1=2; j; kÞ an arbitrary variable u is
discretized as

uiþ1
2;j;k
¼ 1

12
�ui�1;j;k þ 7ui;j;k þ 7uiþ1;j;k � uiþ2;j;k
� 	

;

and its first and second derivatives with respect to the direction x
are discretized respectively as

@u
@x

����
iþ1

2;j;k

¼ 1
Dx

uiþ1;j;k � ui;j;k

� 	
;

@2u
@x2

�����
iþ1

2;j;k

¼ 1

2ðDxÞ2
ðui�1;j;k � ui;j;k � uiþ1;j;k þ uiþ2;j;kÞ:

In order to describe the time integration method, we denote the
right-hand side of (24) by AðUÞi;j;k. Numerical instabilities due to
the non-monotonic behavior of the Van der Waals isotherm (8) near
the critical point are prevented by using a three-stage, third-order
accurate Total Variation Diminishing Runge–Kutta time-integration
scheme (Shu and Osher, 1988), which reads

Uð1Þi;j;k ¼ UðnÞi;j;k þ Dt AðUðnÞÞi;j;k; ð25aÞ

Uð2Þi;j;k ¼
3
4

UðnÞi;j;k þ
1
4

Uð1Þi;j;k þ DtAðUð1ÞÞi;j;k
h i

; ð25bÞ

Uðnþ1Þ
i;j;k ¼ 1

3
UðnÞi;j;k þ

2
3

Uð2Þi;j;k þ Dt AðUð2ÞÞi;j;k
h i

: ð25cÞ

The solution Uðnþ1Þ
i;j;k is then used to obtain the physical velocity vec-

tor u by means of relation (13).
The time step Dt is chosen according to the Courant–Friedrichs–

Lewy (CFL) condition

Dt 6 CDx
dp
dq

� ��1
2

; ð26Þ

where C is an empirical constant value smaller that unity, and
dp
dq


 ��1=2
is the maximum value of the reciprocal of the speed of

sound at the prescribed temperature. Other characteristic velocities
are negligible in the test cases that we consider.

4.1. One-dimensional test simulation

In the following, we present results obtained from one-dimen-
sional simulations with the assumptions (19) and (20). These sim-
ulations provide useful indications on the method. First, they show
how the numerical solutions converge when the grid is refined.
Since the equation of state is non-convex, the stability of the
numerical method is not obvious when mass density assumes val-
ues that lie in the intrinsically unstable part of the solution do-
main. Therefore, it is important to test the method for the case of
a one-dimensional two-phase system with unstable initial condi-
tion. Second, the results show the advantages of the use of the
transformation of variables. To that purpose we have compared



Table 1
L2-norm of the errors of each one-dimensional simulation with respect to a reference
simulation performed on 3200 grid nodes using the transformation of variables, at the
same instant of time as in Fig. 2. The errors are normalized with the L2-norm of the
solution obtained on the reference grid.

Transformation Grid points Error

Yes 800 8:8� 10�3

Yes 400 3:4� 10�3

Yes 200 8:7� 10�2

No 800 1:57� 10�2

No 400 6:9� 10�2

No 200 2:8� 10�1
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solutions with and without transformation of variables for exactly
the same problem, i.e. the same physical parameters and initial and
boundary conditions and the same computational grid.

In the test case chosen the initial velocity is equal to zero,
whereas the initial mass density equals 120 kg/m3 onto which a
small high wave-number perturbation is superposed. This initial
value of mass density is within the unstable part of the phase dia-
gram and any perturbation should lead to phase separation. Sym-
metry conditions are applied at both boundaries. Simulations have
been performed on uniform grids consisting of 200, 400 and 800
points for the case with and without transformation of variables,
while the time step varies with the grid spacing according to CFL
condition (26). For all cases the same spatial discretization and
time integration methods are applied. All simulations show a
gradual initial increase of the perturbation until phase separation
occurs, after which the phase boundaries move. Eventually, a stea-
dy solution is obtained, which consists of several liquid drops in a
vapor background.

In Fig. 2 an enlargement of the solutions is shown at the time in
which the phase separation has already occurred, but the steady
state is not yet reached. Several conclusions can be drawn. First
of all, both the simulations with and without transformation of
variables converge to the same solution when the grid is refined.
However, simulations without transformation require approxi-
mately twice as many grid points to obtain the same accuracy as
simulations with transformation. In order to assess the behavior
of the two methods quantitatively, in Table 1 we calculate the
L2-norm of the errors of each simulation with respect to a simula-
tion performed on 3200 grid nodes using the transformation of
variables, at the same instant of time as in Fig. 2. The errors, which
are normalized with the L2-norm of the solution on the reference
grid, show that the transformation leads to the most accurate solu-
tion for any grid refinement considered here. Furthermore, they
show that both methods converge quadratically in agreement with
the predicted order of accuracy of the discretization scheme.

Moreover, although hard to see in the figure, the solution on the
grid with 200 points contains high wave-number oscillations in the
case without transformation. The method with transformation also
yielded a stable, albeit rather inaccurate, solution on a grid with
only 100 grid points, whereas the method without transformation
turned unstable shortly after the phase separation on the same
grid.
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Fig. 2. Simulation of an isothermal two-phase flow of a pure substance in a one-dimen
transformation of variables. Top: mass density. Bottom: velocity. Left: transformation of
200 grid points.
We remark that in Fig. 2, as well as in the other simulations
shown next, the length of the computational domain is expressed
in nondimensional units due to the scaling properties of the meth-
od described in Section 3. In particular, if the Cartesian coordinates
are scaled by a reference length L, coefficients c1 and c2 in (19) and
(20) scale as 1=L and 1=L2, respectively.

In the next section, the classical multi-dimensional test case of
retraction of an initially ellipsoidal drop will be discussed, for
which the grid convergence will be analyzed and results obtained
with and without transformation will be compared.

5. Drop retraction

In this and in the next section, the method described above is
applied to two isothermal liquid–vapor problems, widely used in
the literature to test two-phase simulation methods: the so-called
drop retraction and two-drops collision. For the first problem, a grid
refinement study has been performed with and without applica-
tion of the transformation of variables. Moreover, the steady-state
result will be compared with an analytical solution.

5.1. Two-dimensional simulations

The problem of the retraction of an initially elliptical drop in its
vapor is well suited to test a numerical method for simulation of
two-phase flow, since in the absence of gravity and other external
forces it is purely driven by interfacial forces. Equilibrium of a li-
quid drop that is surrounded by quiescent vapor of the same
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sional domain, for different grid refinements, with and without application of the
variables. Right: no transformation. Solid lines: 800, marker: 400, dash-dotted lines:
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substance requires the curvature of the interface to be uniform. If
this is not the case, the pressure gradient and the capillary forces
at the interface are unbalanced, giving rise to a nonzero velocity
field in the vicinity of the interface that tends to reshape the drop
into a circle. In steady state the equilibrium at the interface is de-
scribed by the Laplace equation, which reads in two dimensions:

pl � pv ¼
r
R
; ð27Þ

where pl and pv denote the pressure in the liquid and in the vapor
bulk phase respectively, R is the radius of the drop and r is the sur-
face tension coefficient for the given substance at the prescribed
temperature. In three dimensions the Laplace equation is:

pl � pv ¼
2r
R
: ð28Þ

All simulations start from an initial mass density of the form:

qðx; yÞ ¼ qav � Dq tanh 100
ðx� x0Þ2 þ 2ðy� y0Þ

2

x2
0 þ y2

0

� 3

 !
;

where qav and Dq are the average and difference of the mass den-
sities of the liquid and vapor in equilibrium at the actual tempera-
ture, and x0 and y0 are the coordinates of the center of the ellipse.
The two bulk equilibrium values of mass density can be calculated
from the isothermal Van der Waals equation of state by applying
Maxwell’s rule of equal areas (Aifantis and Serrin, 1983a). This ini-
tial condition corresponds to an elliptical drop in vapor, but the
width of the interface is much larger than its equilibrium value.
The initial velocity is set to zero. Since the solution has reflectional
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Fig. 3. Retraction of an elliptical drop surrounded by quiescent saturated vapor. (a) Initia
isolines. Length is in arbitrary units.
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Fig. 4. Retracting drop in two dimensions. Dashed lines: 2002, marker: 4002, solid line
profile.
symmetry in both the x- and y-direction only a quarter of the do-
main is simulated. Symmetry boundary conditions are applied at
all boundaries of the domain. Simulations are performed on a uni-
form Cartesian grid with 200, 400 and 800 points in the two direc-
tions and for both the cases of presence and absence of the
transformation of variables (13).

Due to the difference in radius of curvature along the interface
the drop will start deforming. The capillary force leads to oscilla-
tions in the shape of the drop, which are damped by the action
of viscosity. After a long time a steady state is reached in which
the drop has approximately a circular shape (Yue et al., 2004). The-
oretically, the radius of the drop in steady state is determined by
(27) and the total mass in the computational domain, which is con-
stant because of the symmetry boundary conditions applied. Fig. 3
shows isolines of the mass density in the initial state and the final
steady state.

A characteristic interfacial Reynolds number for this simulation,
as proposed in Lamorgese and Mauri (2009), is defined as the ratio
of capillary to viscous forces:

Re ¼ q2
crRTd2

Ml2
l

;

where qcr denotes the critical value of mass density, d the interface
thickness and ll the dynamic viscosity of the liquid phase at equi-
librium with its vapor. For the case in Fig. 3 Re is approximately 500.

In order to study grid convergence, results of the steady state
mass density and pressure are presented for the case with transfor-
mation of variables in Fig. 4 on a line through the center of the
drop. The figure shows the results on the three grids considered
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Table 2
Numerically obtained surface tension for various grids, for two- and three-dimen-
sional simulations with and without transformation of variables.

Dimension Transformation Mesh r� 104 (N/m)

2 Yes 2002 7.20 ± 0.17

2 Yes 4002 7.017 ± 0.083

2 Yes 8002 6.965 ± 0.024

2 No 2002 10.20 ± 0.17

2 No 4002 7.048 ± 0.070

2 No 8002 6.971 ± 0.017

3 Yes 2003 6.98 ± 0.16

3 Yes 4003 6.943 ± 0.079
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Fig. 5. Initial velocity field and droplet shape for the two-drop collision test case.
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here. The results on the two finest grids collapse, whereas the po-
sition of the interface between the liquid and vapor is slightly
shifted on the coarsest grid. Moreover, the profiles of mass density
have the same shape on all three grids. An increase in the number
of grid points only leads to an increase of the number of grid points
on the interface. The results of the pressure show the typical
behavior caused by the Korteweg tensor. In steady state, the pres-
sure is not constant but the sum of pressure and capillary forces is.
This typical shape of the pressure is not a numerical artifact, as can
be inferred from the similarity of the results on the two finest
grids.

5.2. Validation

Next, a validation of the method is performed by comparing re-
sults of the simulations with analytical results. An important phys-
ical quantity in a two-phase system is surface tension, since it
macroscopically represents the effect of capillarity. Therefore, an
accurate calculation of this parameter is an essential requirement
for any multiphase computational method. Eq. (27) or (28) can
be used to obtain the value of surface tension based on the numer-
ical solution in steady state. The following analytical expression for
the surface tension holds if the width of the interface is small com-
pared to the radius of the drop or bubble (Van der Waals, 1894):

r ¼
Z R2

R1

KðqÞ dq
dR

� �2

dR; ð29Þ

where R1; R2 are the inner and outer radii of the diffuse interface
respectively and we have retained the dependence of the capillarity
coefficient K on mass density. Following Cahn and Hilliard (1958)
and Cahn (1959), and using expression (3) for the total free energy,
we can rewrite (29) as

r ¼ 2
Z q2

q1

1
2

KðqÞDf ðqÞ
� �1

2

dq: ð30Þ

Here Df ðqÞ denotes the excess Helmholtz free energy density when
a unit volume of a mixture of liquid and its saturated vapor with
average mass density q is converted into a uniform phase of the
same mass density (Cahn, 1959).

Thus, the analytical calculation of surface tension is reduced to
the calculation of Df ðqÞ, which can be done for given temperature
and equation of state as follows. The general equation of state
reads

T ds� de ¼ pd
1
q

� �
;

where T is the temperature, and e and s are the specific internal en-
ergy and the specific entropy, respectively. From the definition of
the Helmholtz free energy density f ¼ qðe� TsÞ, it follows at iso-
thermal conditions that

dðf=qÞ ¼ pðqÞ
q2 dq:

The Helmholtz free energy can be found by integration over mass
density if the equation of state pðqÞ is known. A liquid–vapor mix-
ture at the same temperature and with homogeneous mass density
equal to q would have the following free energy density:

f eqðqÞ ¼ f ðqvÞ þ ðq� qvÞ
f ðqlÞ � f ðqvÞ

ql � qv
; ð31Þ

where ql;qv are the mass density of liquid and of its saturated va-
por respectively. Finally, we can write Df ðqÞ as

Df ðqÞ ¼ f ðqÞ � f eqðqÞ: ð32Þ
Substitution of (32) in (30) leads, for our choice of temperature, cap-
illarity coefficient and parameters in the equation of state (8), to the
theoretical value of surface tension r ¼ 6:961� 10�4 N=m.

This can be compared with the values obtained from the
numerical results and (27), which are collected in Table 2. The
shape of the interface is never exactly circular on a Cartesian mesh.
The corresponding difference between maximum and minimum
drop radius is used to estimate the error in the surface tension in-
cluded in the table.

For the simulations which employ the transformation of vari-
ables the discrepancy between the numerical and theoretical value
of surface tension ranges from 3.4% on the coarsest grid to 0.05% on
the finest grid. Moreover, the decrease in the error caused by the
non-circular shape of the drop reduces in agreement with the sec-
ond-order accurate spatial discretization scheme employed in the
method. As in the one-dimensional test case discussed in the pre-
vious section, the method without transformation requires a finer
grid to work well. The numerical solution on the grid with 200
points in each direction did not converge to a steady state and
the corresponding surface tension, which is based on a time aver-
age, is far from the theoretical value. On the finer grids the differ-
ences between the steady solutions of both methods are within the
error estimate.
5.3. Three-dimensional simulations

For the method where the transformation of variables is ap-
plied, also three-dimensional simulations of the same test case
have been performed on two Cartesian uniform meshes with
2003 and 4003 grid points. In order to save calculation time, the
reflectional symmetry in all three directions has been used and
only one eighth of the domain has been calculated. Results for
the surface tension based on these simulations are included in Ta-
ble 2. The accuracy of the estimation is significantly better than in
two dimensions at the same grid resolution. However, the fact that
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the difference between numerical and theoretical surface tension
hardly decreases with increasing grid size for two grids suggests
that this is a coincidence.

6. Two-drop collision

Two-dimensional, isothermal head-on collision between two
identical liquid drops surrounded by vapor is a second classical
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Fig. 6. Two-dimensional head-on collision between two identical liquid droplets in v
equidistant times. Three isolines of mass density are shown: one at 10%, one at 50% and
benchmark simulation for multiphase simulation methods (Nobari
et al., 1996). In this test case the interface undergoes topological
changes, which lead to coalescence. Coalescence occurs because
of attractive forces between molecules on the nearby interfaces
of the two droplets. The benefit of the diffuse-interface approach
over sharp-interface methods is that these forces are included in
the formulation. No explicit reconnection of the interface at the
moment of the closest approach of the two drops is required. In
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the same way break-up of a drop into two smaller drops occurs
automatically if the interface is constricted too far.

As a test case we consider two initially circular drops in vapor
with a sharp interface in a divergence-free velocity field, which
consists of four vortices in such a way that the centers of the drops
initially approach each other. Due to this approaching velocity and
due to the smoothing of the interface the two drops approach each
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Fig. 7. Two-dimensional head-on collision of two identical liquid droplets in vapor. From
with larger time interval than in Fig. 6. Three isolines of mass density are shown: one a
other so closely that the attractive intermolecular forces lead to
coalescence. The initial velocity field and the initial shape of the
droplets are shown in Fig. 5.

Symmetry boundary conditions are applied on all boundaries.
The initial velocity field satisfies these boundary conditions. Since
the solution has reflectional symmetry in both directions, only a
quarter of the domain is simulated. The computational grid is
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uniform and has 800 points in each direction. The numerical sim-
ulation is performed in the formulation with transformation of
variables. Isolines of mass density are shown at several equidistant
times, starting from the initial time, in Figs. 6 and 7.

After the coalescence of the drops the curvature of the interface
is far from uniform and the drop keeps deforming until a state of
equilibrium is reached in which the single drop is circular again.
Since the problem conserves total mass, the radius of the final drop
depends on the total initial mass in the domain and on the equilib-
rium values of mass density in the bulk liquid and vapor.

The Weber number for this type of problem, defined as

We ¼ qV2D
r

;

with q the drop mass density, V the magnitude of the relative im-
pact velocity of the drops and D the drop diameter, is recognized
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Fig. 8. Two-dimensional, asymmetric collision of two liquid droplets in vapor at high
bottom: time evolution of the simulation at arbitrary subsequent times. The isoline of m
equilibrium.
to be the only parameter that affects the way coalescence takes
place (Schotland, 1960). If the magnitude of the initial velocity field
is increased, We is also increased and causes the drops to experience
stronger deformation during coalescence. It is quite well known
that the formation of so-called satellite drops is bound to occur if
high-velocity jets are formed during coalescence, see for example
Mansour and Lundgren (1990) and van der Geld and Vermeer
(1994). In the simulation that we present in Fig. 8, the Weber num-
ber based on the maximum magnitude of the velocity field imposed
at time t ¼ 0 is 40 times larger than in the simulation of Figs. 6, 7,
and we have removed the reflectional symmetry in both directions
so that the calculation of the solution is extended to the entire do-
main, since now the centers of the two colliding drops are not
placed in line. The first picture shows a stage of the coalescence
of the two drops. The two next pictures show that in a later stage
of this process the formation of satellite droplets is predicted:
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reflection of compression waves due to boundary conditions causes
local fluctuations of the mass density, from which satellite droplets
originate if conditions are favorable. This is the case in the simula-
tion considered here, as the ratio p=pcr between the value of as-
signed pressure and the critical pressure is approximately equal
to 0.95.

At this stage of the coalescence process, bubble formation inside
the central drop also appears. While satellite droplets are gener-
ated by compression waves in the vapor phase, bubbles originate
by effect of rarefaction waves in the liquid phase. This phenome-
non is similar to the formation of cavitation bubbles, and is known
to occur even at ambient pressure when a drop impinges at high
velocity on a solid surface (Harlow and Shannon, 1967; Fujimoto
et al., 2000). Expansion waves generated at the impact with the
surface propagate, reflect and interact to produce areas of that
low pressure that bubbles are formed inside the drop. In a similar
manner bubbles are created in the situation described here.

The fourth picture is right after the coalescence of the central
drop with satellite droplets. Finally, the two last pictures show
the configuration just before and after the so-called pinch-off of
the central drop.

7. Conclusions

The objective of the present paper was the development of a
stable and accurate numerical method for isothermal two-phase
flow of a pure substance near the critical point, which takes into
account the finite thickness of the interface. The adoption of a dif-
fuse-interface approach requires the incorporation of the tensor of
capillary stresses. Together with a non-convex two-phase equation
of state, such as the Van der Waals equation, this leads to a system
of equations with dispersive and elliptic properties. A stable
numerical solution method has been developed that is based on
a transformation of the dependent variables and on a Total Varia-
tion Diminishing time integration technique.

The accuracy of the numerical method and its grid convergence
have been assessed for the problem of the retraction of an initially
non-spherical drop in vapor, both in two and in three spatial
dimensions. The resulting surface tension compares well with its
theoretical value. Moreover, it has been demonstrated that the
transformation of variables allows the usage of coarser grids with-
out losing accuracy. Thus, local grid refinement can be avoided at
the interfacial zones if the size of the computational domain is
not too large compared to the thickness of the interface.

The numerical method has also been applied to the isothermal
head-on collision between two identical drops. The significance of
this test case is twofold. First, unlike other two-phase models, rup-
ture of the colliding interfacial films and subsequent coalescence of
the two drops are reproduced by the numerical simulation without
any need of an additional model. Second, the method proves to be
able to capture the time evolution of interfaces undergoing major
topological changes, such as the pinch-off of a smaller drop after
the coalescence when the characteristic Weber number is suffi-
ciently high.

It can be concluded that the numerical method described here is
a useful alternative to other implementations of the diffuse-inter-
face model for isothermal two-phase flows. In the results shown
here we have chosen the dynamic viscosity to be a linear function
of mass density and the gradient energy coefficient, K, to be inver-
sely proportional to mass density. The transformation of variables
can also be applied in more general conditions, but then the kine-
matic viscosity coefficient m0 will be a function of mass density and
the transformed set of equations will contain additional terms.
However, condition (18) limits the possibility of removing the dis-
persive terms from the equations for the transformed variables to
moderate values of the Reynolds number based on the interface
thickness.
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